

Morgantown Downtown Circulation Study Presentation on Draft Report 3/20/2014 (updated 3/24/2014)

Andrew P. Nichols, PhD, PE, PTOE Rahall Transportation Institute

Presentation Overview

- Study Objectives
- Data Collection
- Traffic Modeling
- Performance Measures
- Existing Problem Areas
- Specific Changes Analyzed
- Alternatives Evaluated
- Results
- Summary

Study Objectives

- Quantify the existing level-of-service and other performance measures for motorized vehicles in the downtown Morgantown area
- Obtain input from the public regarding existing problems in the downtown Morgantown area
- Investigate alternatives to improve the circulation of traffic within and through the downtown Morgantown area
- Quantify the level-of-service and other performance measures for each alternative in order to draw comparisons
$>$

Study Area

Data Collection

Traffic Flows

- All data collected on Weds 4/I3/20II from 7am-7pm
- Vehicle Counts
- Turning Movement Counts at 9 Intersections
- Machine Counts at 5 mid-block locations

- Origin-Destination Flows

- Used cameras to capture license plates of vehicles entering and exiting study area
- License plates matched to determine travel time and establish flow patterns

Data Collection

Other Data

- Downtown Geometric Survey
- Downtown Parking Inventory

। Locations, access points, and number of spaces

Parking Type	Number of Spaces
City-Owned Surface Lots	486
City-Owned Structures	910
WVU Surface Lot	105
Private/Church Lot	997
On-Street Parking	223

- Public Meeting conducted on 10/6/201 I
- Support for one-way to two-way conversion
- Desire to eliminate heavy truck traffic from downtown area
-

Downtown Geometric Survey

Traffic Modeling

- TransModeler/TransCAD
- Analysis completed by Burgess \& Niple
- Common software for Planning level analysis
- Estimate driver's route choice using O-D data
- Considers the location and size of parking
- Estimate the change in route choice in response to reconfigurations

- Synchro/SimTraffic

, Common software for Operations level analysis

- Accounts for detailed traffic signal operations
- Produces detailed performance measures

Traffic Modeling

I. Build Base Geometric Model
 O-D flows
5. Assign "Existing" trips to intersections
6. Import "Existing" intersection volumes
7. Optimize signal timings
8. Generate "Existing" performance measures

Synchro Model for Existing Conditions

Performance Measures

- Control Delay and Level-of-Service (LOS)
- By movement and overall intersection

- Volume-to-Capacity Ratios (v/c)
- By movement and overall intersection
- Congestion starts to occur at v/c >0.85
- $95^{\text {th }}$ Percentile Queue Lengths (feet)
- By movement
- Queue is only expected to exceed this distance 5% of the time

Existing Problem Areas

Walnut Street @ University Avenue

- Queueing on westbound Walnut Street at University Ave
- Worst during PM peak, often queueing to High Street

Existing Problem Areas Walnut Street @ University Avenue

- 3-lane westbound approach essentially operates as 2 lanes

Existing Problem Areas

University Avenue @ Fayette Street

- Queueing on northbound University Avenue
- Worst during AM peak, with congestion back to Pleasant Street

Existing Problem Areas University Avenue @ Pleasant Street

- Queueing on northbound University Avenue
- AM peak - thru movement tends to be the worst
| PM peak - left-turn movement tends to be the worst
- Queueing on eastbound Pleasant Street

Existing Problem Areas

Willey Street @ High Street

- Congestion on westbound Willey St throughout the day
- Eastbound Willey Street gets congested mid-day and PM

Specific Changes Analyzed Conversion to Two-Way

- Conversion of the following streets from one-way to two-way flow
- High Street (south of Willey Street)
- Spruce Street (south of Willey Street)
- Allows more direct access to parking from Willey Street
- Walnut Street
- Allows more direct access between University Ave and Walnut Street bridge (including heavy vehicles)
- Pleasant Street
- Provides another outlet from downtown area to University Avenue

```
-
```


Specific Changes Analyzed
 University Ave \& Pleasant Street

- Pleasant Street becomes two-way flow
- Eliminate southbound left-turn onto Pleasant

Specific Changes Analyzed University Ave \& Walnut Street

- Walnut Street becomes two-way flow
- East leg can only handle one lane in each direction

Specific Changes Analyzed University Ave \& Fayette Street

- Eliminate southbound left-turn from Beechurst Avenue
- Accounted for in Alternatives 2 \& 3

Specific Changes Analyzed

University Ave \& Fayette Street

- Convert University Avenue to Two-Way Flow
- Accounted for in Alternative 3

Specific Changes Analyzed University Ave \& Willey Street

- Convert to a 3-way "T" signalized intersection
- Accounted for in Alternative 3

Alternative 1 Overview

- System Modifications

- Conversion of One-way to Two-way flow on
- High Street (south of Willey Street)
, Spruce Street (south of Willey Street)
- Walnut Street
, Pleasant Street
- Assumes "ideal" conditions with left-turn bays at all intersections created by the two-way conversion
- Elimination of southbound left-turn from University Avenue onto Pleasant Street
-

Alternative 2 Overview

- System Modifications (in addition to Alternative I)
- Elimination of southbound left-turn onto Fayette Street
- Elimination of left-turns from Walnut Street onto University
- Elimination of right-turns from Pleasant Street onto University
- Elimination of left-turn bay on eastbound Pleasant @ High St.
- Anticipated Impacts
- Removal of ~ 33 on-street parking spaces
, ~ 7 on High Street
, ~ 26 on Walnut Street
- Requires right-of-way along east leg of Willey Street for westbound left-turn bay onto Spruce Street

Alternative 3 Overview

- System Modifications (In addition to Alternative 2)
- Conversion of University Avenue from Willey Street to Fayette Street from one-way to two-way flow
- Realignment of University Avenue \& Willey Street intersection with turn bays along University Avenue and signalization
- Anticipated Impacts (In addition to Alternative 2)
- Removal of ~II on-street parking spaces on University Avenue
- Requires right-of-way in vicinity of Willey Street and University Avenue to realign Willey Street
>

Existing AM/PM Intersection LOS

Alt 1 AM/PM Intersection LOS

Alt 2 AM/PM Intersection LOS

Redistribution of Trips
 Existing - Alternative 2 (PM Peak)

Alt 3 AM/PM Intersection LOS

Redistribution of Trips Existing - Alternative 3 (PM Peak)

AM Peak Delay \& LOS by Alternative

Summary

- There is no perfect solution to solve congestion problems
- Two-way conversion seems feasible as long as increase in congestion and shift in its location is acceptable
- Alternative I was only modeled to determine initial feasibility of one-way to two-way conversion
- Alternative 2 Performance (compared to Existing)
- Reduces congestion at University/Fayette
- Significantly increases congestion at University/Pleasant
- Increases congestion at High/Walnut
- Increases congestion at Spruce/Willey

Summary

- Alternative 3 Performance (compared to Existing)
- Reduces congestion at all Spruce/High intersections
b Reduces congestion at University/Pleasant
- Increases congestion at University/Fayette
- Increases congestion at University/Walnut
- Operationally, this is the preferred alternative because some traffic is shifted from High Street and Spruce Street
- Future Work and Recommendations
- Improvements to the east leg of Pleasant Street at University Avenue would greatly improve LOS at that intersection
- Investigate feasibility of the recommended intersection modifications
- After final configuration is determined, additional operational considerations could be evaluated (e.g., turn restrictions)
-

Principal Investigator:
Andrew P. Nichols, PhD, PE, PTOE

Associate Professor of Engineering Marshall University

Director of Intelligent Transportation Systems Rahall Transportation Institute

andrew.nichols@marshall.edu
304-696-3203

