

Agenda

- Intersection Overview
\square Project Background
- Description of Alternatives
- Alternative Operational Performance
- 20-year Projected Conditions
- New Signal@Suburban Lanes \& Office Depot
- Qualitative Alternative Comparisons
- Summary

Intersection Location

Existing Geometry and Signal Phasing

Existing Signal Operations

\square Currently runs coordinated timing plans from 7-9am (cycle $=166 \mathrm{~s}$) and $2-7 \mathrm{pm}$ (cycle $=206 \mathrm{~s}$) on weekdays and "Free" other times

- Coordination plan cycles are $2 x$ the cycle lengths of the - adjacent signal system to the east
\square The push-button actuated exclusive pedestrian mavement is 27 seconds

Notable Existing Problems

\square Southbound and Eastbound approaches back up during AM Peak (and other times)

- Northbound thru movement backs up during PM Peak
\square Southbound left-turn is permitted which can result in right-angle collisions due to vehicles in intersection

Notable Existing Problems

- Northbound right-turn drivers do not stop for pedestrians legally in the crosswalk (i.e., have a walk indication)
- Motorists see a circular red indication - and no green right-turn arrow
\square Northbound right-turn movement behavior varies among drivers, which contributes to rear-end collisions

Intersection Pedestrian Demand July 7-13, 2012

Project Background

- Initial alternatives analysis evaluated both 2-lane and 3 -Iane roundabouts at this intersection
\square 3-lane roundabout was necessary to meet the operational demand, but was not feasible due to
\square The right-of-way needed to accommodate the necessary geometry
- The potential delay for the eastbound approach
\square Lack of pedestrian accommodations
- Two alternatives identified for detailed analysis

Alternative 1 Design Layout

Add Northbound \& Eastbound Lanes

Alternative 1 Benefits Add Northbound \& Eastbound Lanes

\square Pedestrian movements will be provided across 3 approaches running concurrently with vehicles
\square Protected only left-turns will reduce crashes
\square Northbound right turn will be signalized to eliminate driver confusion and ensure pedestrian right-of-way
\square Westbound thru movement runs concurrently with eaśtbound movement, increasing its green time

Alternative 2 Conceptual Layout
 Triangabout

- Three 2/3 Phase signalized intersections
- One-way flow in triangle
- Additional NB lane (within R/W)
- Additional WB lane (within R/W)
- 3 signalized pedestrian crossings
- All protected left-turns

Alternative 2 Design Layout
 Triangabout

Alternative 2 Simulation
Triangabout

Alternative 2 Benefits

Triangabout

- All intersections are 2 or 3 phases, which increases available green time
- Has safety benefits of a roundabout
- Additional westbound lane allows thru and right-turn movements to be separated
- Westbound right-turn is continuous except when pedestrian crosses
- Westbound thru movement runs concurrently with eastbound movement, increasing its green time
\square All left-turns are protected

Unconventional Intersection Designs

Examples

- FHWA Every Day Counts 2 Initiative
- Intersections with Displaced Left-turns
\square Benefits are Improved Safety and Reduced Delays
- Types
- Median U-Turns (Michigan Lefts, ThrU-Turns)
- Quadrant Intersections
- Jug Handle Intersections

Unconventional Intersection Designs Median U-Turns

Unconventional Intersection Designs

Quadrant Intersections

Operational Analysis

Alternative configuration and analysis conducted with VISSIM software

- Conditions Modeled
- Includes pedestrian demand
- Cycle lengths constrained to adjacent signal system

Alfernative 1 (Existing + NB \& EB lanes)
Alternative 2 (Triangabout)

VISSIM Results
 Intersection Delay (Peak Hours)

VISSIM Results

Delay by Approach (PM Peak)

VISSIM Results

Delay Reductions From Existing Scenario

	Existing NB \& EB lanes		Triangatbout	
	AM Peak	PM Peak	AM Peak	PM Peak
Easthound Approach	-38%	-53%	-38%	-48%
Northbound Approach	-31%	-63%	-34%	-58%
Westbound Approach	-29%	-56%	-68%	-68%
Southbound Approach	-75%	-42%	-58%	-26%
Overall Intersection	-51%	-56%	-55%	-54%

VISSIM Results

Delay by Movement (AM Peak)

	Existing		Existing + NB \& EE lancs		Triangahout	
	Average	Std Dev	Average	Std Dev	Average	Std Dev
EBRT	66	5	39	4	40	4
EBIH	63	4	41	1	37	1
EBLT	60	8	31	4	59	3
WBRT	41	4	27	3	2	1
WBTH	45	5	29	1	11	2
WELT	43	4	32	2	16	2
NERT	19	2				
NETH	55	4	30	3	9	1
NBLT	38	14	22	10	53	2
						19
SERT	108	14	24	5	44	7
SBTH	121	19	24	1	46	6
SBLT	124	18	54	4	67	4

VISSIM Results

Delay by Movement (PM Peak)

	Existing		Existing + NB 8 EB lanes		Triangatout	
	Average	Std Dev	Average	Std Dev	Average	Sid Dev
EERT	88	10	40	4	37	5
EBTH	85	7	40	2	43	3
EBLT	83	2	39	3	54	3
WBRT	70	32	25	3	3	1
WBTH	70	33	25	3	15	3
WELT	69	41	34	1	28	2
NBRT	46	4	17	2	19	1
TBTH	119	9	43	4	49	2
NBLT	116	21	34	5	56	7
SBRT	69	5	30	14	43	5
SETH	64	4	32	16	45	9
SELT	102	7	78	21	83	9

VISSIM Results

Mainline WV 705 Delay

- Calculated from Applebee's Signal to North Elementary School Signal
- Triangabout performs better during $A M$ in both directions and PM in westbound direction

VISSIM Results

Estimated Benefits Compared to Existing

		Existing + NB \& EB lanes		Triangahout	
	Monetary value	AM Peak	PM Peak	AM Peak	PM Peak
Travel Delay	$\$ 17.00 /$ hour 1	$\$ 429$	$\$ 702$	$\$ 467$	$\$ 678$
Emissions	$\$ 1.10 /$ hour 2	$\$ 28$	$\$ 45$	$\$ 30$	$\$ 44$
Fuel Consumption	$\$ 3.50 /$ gallon 2	$\$ 99$	$\$ 174$	$\$ 107$	$\$ 152$
Total	-	$\$ 556$	$\$ 921$	$\$ 604$	$\$ 874$
Annual Progection	-	$\$ 1,992,000 /$ year		$\$ 2,014,500 /$ year	

1: T1: 2012 Urbon Mobility Report: hitp://d2dil5nnlpfrOr.eloudfront-nel/mi.tamu.edu/documents/mablitity-report-2.012.pdf
2: Maryland SHA CHARD Evaluation Report: http://chartinput, umd.edu/reports/CHART 2011 website (July2012l-pdf

- Emission rates: $\mathrm{HC}(13.073 \mathrm{~g} / \mathrm{hr}$-delay), CO $(146.831 \mathrm{~g} / \mathrm{hr}$-delay), $\mathrm{NO} / 6.261 \mathrm{~g} / \mathrm{hr}$-delay)

Monetary values: $\mathrm{HC}(\$ 6.7 / \mathrm{kg}), \mathrm{CO}(\$ 8.36 / \mathrm{kg}), \mathrm{NO}(\$ 12.875 / \mathrm{kg})$
3: Assuming AM peak is 6% of dally comribution and PM peak is $11 \%, 5$ weekdays, 52 weeks/year

20-year Projected Conditions

Growth rate $\approx 1.5 \%$ per year
Overall Intersection Delay Increase

- Alternative 1: Add NB \& EB Lanes
- AM Peak Hour: $+103 \%$ (28.5 s to 57.8 s)
- PM Peak Hour: $+178 \%$ (31.6 s to 88.0 s)
- Alternative 2: Triangabout
- AM Peak Hour: $+112 \%$ (25.9s to 55.0 s)
- PM Peak Hour: $+139 \%$ (33.0 s to 79.2 s)

New Signalized Intersection

WV 705 \& Suburban Lanes / Office Depot

Impact of New Signal on Chestnut Ridge \& Van Voorhis Intersection

- Assuming configuration similar to North Elementary school intersection
- Conservative Estimate of Intersection Delay Increase
- Alternative 1: Add NB \& EB Lanes
- AM Peak Hour: +19\%
- PM Peak Hour: +24\%
- Alternative 2: Triangabout
- AM Peak Hour: +23\%
- PM Peak Hour: +15\%

Qualitative Comparisons

	Alternative 1 Add NB and EB Lanes	Alternative 2 Triangabout
Pedestrians	- All movements concurrent - Ped time across WB approach still impacts signal timing and stops continuous NB Right-Turn	- All movements concurrent - Ped activation at iwo signals stops continuous movements but doesn't impact signal timing
Right-of- Way	- Will require R/W on southwest quadrant	- Can be accomplished without additional R / W acquisition
Construction Costs	- Costs to install two auxiliary lanes, move signal poles, additionall signal heads	- Costs to construct new road, reconfigure existing approaches, new signals, overhead signage
Access	- No improvement to access in vicinity of intersection	- Should facilitate access to property on NE quadrant of intersection

-

Qualitative Comparisons

	Alternative 1 Add NB and EB Lanes	Alternative 2 Triangabout
Operations	- Can operate in a coordinated system - Compatible with adaptive control - May need longer cycle lengths during peak: times - Off-peak may perform better due to ability to skip phases	- Can operate in a coordinated system - May not be compatible with adaptive control - Less delay at each intersection due to fewer phases - Off-peak may be less efficient due to inability to skip phases
Driver Expectancy	- Nothing unconventional	- Operation isn't unconventional, but the configuration will be new to motorists
Safety	- Right-Angle crashes should reduce with protected lefts - 36 total conflict points (25 crossing)	- Crash benefits similar to roundabouts with reduced rightangle crashes - 21 total conflict points (10 crossing)

Alternative 1 Conflict Point Analysis Add Northbound \& Eastbound Lanes

Alternative 2 Conflict Point Analysis

Triangabout

Summary

Both alternatives are feasible from an operational standpoint and exhibit similar peak hour delays
\square Both alternatives improve pedestrian safety and minimize impact on vehicle movements

- Triangabout anticipated to improve vehicle safety and access, but will be unfamiliar to drivers
- Cosst of both alternatives will likely be similar

Project Contacts

Principal Investigator:

Andrew P. Nichols, PhD, PE
Rahall Transportation Institute
Andrew.Nichols@marshall.edu
304-696-3203

Project Director:
Bruce Kenney, PE
West Virginia DOH
Bruce.E.Kenney@wv.gov
304-558-9449

