

- Currently runs coordinated timing plans from 7-9am (cycle = 166s) and 2-7pm (cycle = 206s) on weekdays and "Free" other times
 - Coordination plan cycles are 2x the cycle lengths of the
 - adjacent signal system to the east
- The push-button actuated exclusive pedestrian movement is 27 seconds

Project Background Initial alternatives analysis evaluated both 2-lane and 3-lane roundabouts at this intersection 3-lane roundabout was necessary to meet the operational demand, but was not feasible due to The right-of-way needed to accommodate the necessary geometry The potential delay for the eastbound approach Lack of pedestrian accommodations Two alternatives identified for detailed analysis

Alternative 1 Benefits Add Northbound & Eastbound Lanes

- Pedestrian movements will be provided across 3 approaches running concurrently with vehicles
- □ Protected only left-turns will reduce crashes
- Northbound right turn will be signalized to eliminate driver confusion and ensure pedestrian right-of-way
- Westbound thru movement runs concurrently with eastbound movement, increasing its green time

Alternative 2 Benefits Triangabout

- □ All intersections are 2 or 3 phases, which increases available green time
- □ Has safety benefits of a roundabout
- Additional westbound lane allows thru and right-turn movements to be separated
- Westbound right-turn is continuous except when pedestrian crosses
- Westbound thru movement runs concurrently with eastbound movement, increasing its green time
- □ All left-turns are protected

Unconventional Intersection Designs

Examples

- □ FHWA Every Day Counts 2 Initiative
- □ Intersections with Displaced Left-turns
- □ Benefits are Improved Safety and Reduced Delays
- □ Types
 - Median U-Turns (Michigan Lefts, ThrU-Turns)
 - Quadrant Intersections
 - Jug Handle Intersections

- Alternative configuration and analysis conducted with VISSIM software
- Conditions Modeled
 - Includes pedestrian demand
 - **D** Cycle lengths constrained to adjacent signal system
- □ Alternative 1 (Existing + NB & EB lanes)
- □ Alternative 2 (Triangabout)

.....

	The states	Existing + NB & EB lanes		Triangabout	
		AM Peak	PM Peak	AM Peak	PM Peak
-	Eastbound Approach	-38%	-53%	-38%	-48%
	Northbound Approach	-31%	-63%	-34%	-58%
	Westbound Approach	-29%	-56%	-68%	-68%
	 Southbound Approach 	-75%	-42%	-58%	-26%
	Overall Intersection	-51%	-56%	-55%	-54%

1.1

.

SSIN	N Resi	ults				
1.					1.5	
ay p	y Mo	vemer	אר) זו (AA	л геа	к)	12
	TO STATE	10000		1.1		
2200	Exis	sting	Exis NB & E	ting + E lanes	Triang	jabout
	Average	Std Dev	Average	Std Dev	Average	Std Dev
EBRT	66	5	39	4	40	4
EBTH	63	4	41	1	37	1
EBLT	60	8	31	4	59	3
WBRT	41	4	27	3	2	1
WBTH	45	5	29	1	11	2
WBLT	43	4	32	2	16	2
NBRT	19	2	15	2	9	1
NBTH	55	4	30	3	46	2
NBLT	38	14	22	10	53	19
SBRT	108	14	24	5	44	7
SBTH	121	19	24	1	46	6
SBIT	124	18	54	4	67	4

	1110	emer	II (FIV	real	K)	
		Con Miles	and the second		and and	1777
3300	Exis	sting	Exist NB & E	ting + B lanes	Trianç	jabout
1.50	Average	Std Dev	Average	Std Dev	Average	Std Dev
EBRT	88	10	40	4	37	5
EBTH	85	7	40	2	43	3
EBLT	83	2	39	3	54	3
WBRT	70	32	25	3	8	1
WBTH	70	33	25	3	15	3
WBLT	69	41	34	1	28	2
NBRT	46	4	17	2	19	1
NBTH	119	9	43	4	49	2
NBLT	116	21	34	5	56	7
SBRT	69	5	30	14	43	5
SBTH	64	4	32	16	45	9
SBLT	102	7	78	21	83	9

Qualitative Comparisons

	Alternative 1 Add NB and EB Lanes	Alternative 2 Triangabout
Pedestrians	 All movements concurrent Ped time across WB approach still impacts signal timing and stops continuous NB Right-Turn 	 All movements concurrent Ped activation at two signals stops continuous movements but doesn't impact signal timing
Right-of- Way	 Will require R/W on southwest quadrant 	Can be accomplished without additional R/W acquisition
Construction Costs	 Costs to install two auxiliary lanes, move signal poles, additional signal heads 	 Costs to construct new road, reconfigure existing approaches, new signals, overhead signage
Access	 No improvement to access in vicinity of intersection 	Should facilitate access to property on NE quadrant of intersection

2.4	Alternative 1	Alternative 2
Operations	 Add NB and EB Lanes Can operate in a coordinated system Compatible with adaptive control May need longer cycle lengths during peak times Off-peak may perform better due 	 Can operate in a coordinated system May not be compatible with adaptive control Less delay at each intersection due to fewer phases Off-peak may be less efficient due
Driver Expectancy	to ability to skip phasesNothing unconventional	to inability to skip phases Operation isn't unconventional, but the configuration will be new to motorists
Safety	 Right-Angle crashes should reduce with protected lefts 36 total conflict points (25 crossing) 	Crash benefits similar to roundabouts with reduced right- angle crashes 21 total conflict points (10 crossing)

- Both alternatives are feasible from an operational standpoint and exhibit similar peak hour delays
- Both alternatives improve pedestrian safety and minimize impact on vehicle movements
- Triangabout anticipated to improve vehicle safety and access, but will be unfamiliar to drivers
- Cost of both alternatives will likely be similar

